(x^2+8x)+(15x+40)=180

Simple and best practice solution for (x^2+8x)+(15x+40)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+8x)+(15x+40)=180 equation:



(x^2+8x)+(15x+40)=180
We move all terms to the left:
(x^2+8x)+(15x+40)-(180)=0
We get rid of parentheses
x^2+8x+15x+40-180=0
We add all the numbers together, and all the variables
x^2+23x-140=0
a = 1; b = 23; c = -140;
Δ = b2-4ac
Δ = 232-4·1·(-140)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-33}{2*1}=\frac{-56}{2} =-28 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+33}{2*1}=\frac{10}{2} =5 $

See similar equations:

| X^2+(y-2)^2=25 | | y=87.5 | | 6x+3=69+180 | | -9x-3=-20 | | -4+3x=4(x-2) | | 40x+(x-3)=468 | | 40x18x-3=468 | | 10(x+9)=-x-5 | | 8x-8=12x+4 | | 25y-4=20y+12 | | 4n+12=84 | | 8x-8=12x-4 | | -3(v-2)=-9v-36 | | 11x-8=102* | | 19n+11-8n–11= | | 4x+1=2×+7= | | -5-4a=11a-10 | | 5t²-5t-360=0 | | 2x9999999=9 | | 4n^2=8 | | 1.8x-10=-4;x= | | 5x-4x=50 | | 1.8x=-4;x= | | h=43+63 | | -(2y+4)=-4(y-6)+3y | | 4=z4 | | x=7+-5(2/3) | | 9x-7=-39+7x | | -25x-8=4-x | | 6x-5(-2)=31 | | 12x-21(2)=82 | | -(4+6n)=-(3n-2) |

Equations solver categories